Datasheet Texas Instruments ADS8412IBPFBTG4

ManufacturerTexas Instruments
SeriesADS8412
Part NumberADS8412IBPFBTG4
Datasheet Texas Instruments ADS8412IBPFBTG4

16-Bit 2MSPS Parallel ADC W/Ref, Unipolar Fully Differential Input 48-TQFP -40 to 85

Datasheets

16-Bit 2 MSPS Unipolar Diff Input Micropower Sampling Analog-to-Digital Convert datasheet
PDF, 1.4 Mb, Revision: A, File published: Dec 20, 2004
Extract from the document

Prices

Status

Lifecycle StatusActive (Recommended for new designs)
Manufacture's Sample AvailabilityYes

Packaging

Pin4848
Package TypePFBPFB
Industry STD TermTQFPTQFP
JEDEC CodeS-PQFP-GS-PQFP-G
Package QTY250250
CarrierSMALL T&RSMALL T&R
Device MarkingBADS8412I
Width (mm)77
Length (mm)77
Thickness (mm)11
Pitch (mm).5.5
Max Height (mm)1.21.2
Mechanical DataDownloadDownload

Parametrics

# Input Channels1
Analog Voltage AVDD(Max)5.25 V
Analog Voltage AVDD(Min)4.75 V
ArchitectureSAR
Digital Supply(Max)5.25 V
Digital Supply(Min)2.7 V
INL(Max)2.5 +/-LSB
Input Range(Max)4.2 V
Input Range(Min)4.2 V
Input TypeDifferential
Integrated FeaturesOscillator
InterfaceParallel
Multi-Channel ConfigurationN/A
Operating Temperature Range-40 to 85 C
Package GroupTQFP
Package Size: mm2:W x L48TQFP: 81 mm2: 9 x 9(TQFP) PKG
Power Consumption(Typ)155 mW
RatingCatalog
Reference ModeExt,Int
Resolution16 Bits
SINAD88 dB
SNR90 dB
Sample Rate (max)2MSPS SPS
Sample Rate(Max)2 MSPS
THD(Typ)-95 dB

Eco Plan

RoHSCompliant

Design Kits & Evaluation Modules

  • Evaluation Modules & Boards: ADS8412EVM
    ADS8412 Evaluation Module
    Lifecycle Status: Active (Recommended for new designs)

Application Notes

  • Using ADS8411/2 (16-Bit 2MSPS SAR) as a Serial ADC
    PDF, 438 Kb, File published: May 24, 2004
    This application report discusses how to use a parallel ADC as a serial ADC by using a low-cost CPLD. This concept is tested with a Texas Instruments ADS8411/12 (16-bit, 2 MSPS SAR ADC) and an Altera(TM) MAX 3000A CPLD. A full solution with a schematic, layout, and software for programming the CPLD is presented at the end of the report.
  • Interfacing the ADS8402/ADS8412 to TMS320C6713 DSP
    PDF, 262 Kb, File published: Sep 23, 2004
    This application report presents a solution for interfacing the ADS8402 and ADS8412 16-bit, parallel interface converters to the TMS320C6713 DSP. The hardware solution consists of existing and orderable hardware, specifically the ADS8402EVM, 'C6713 DSK, and 5-6K interface board. The software demonstrates how to use the EDMA controller to efficiently collect data from the data converter. Discussed
  • Determining Minimum Acquisition Times for SAR ADCs, part 1 (Rev. A)
    PDF, 227 Kb, Revision: A, File published: Nov 10, 2010
    This application report analyzes a simple method for calculating minimum acquisition times for successive-approximation register analog-to-digital converters (SAR ADCs). The input structure of the ADC is examined along with the driving circuit. The voltage on the sampling capacitor is then determined for the case when a step function is applied to the input of the driving circuit. Three different
  • Determining Minimum Acquisition Times for SAR ADCs, part 2
    PDF, 215 Kb, File published: Mar 17, 2011
    The input structure circuit of a successive-approximation register analog-to-digital converter (SAR ADC) incombination with the driving circuit forms a transfer function that can be used to determine minimum acquisition times for different types of applied input signals. This application report, which builds on Determining Minimum Acquisition Times for SAR ADCs When a Step Function is Applied to

Model Line

Series: ADS8412 (4)

Manufacturer's Classification

  • Semiconductors > Data Converters > Analog-to-Digital Converters (ADCs) > Precision ADCs (<=10MSPS)
EMS supplier