Datasheet ADSP-SC582, ADSP-SC583, ADSP-SC584, ADSP-SC587, ADSP-SC589, ADSP-21583, ADSP-21584, ADSP-21587 (Analog Devices) - 6

ManufacturerAnalog Devices
DescriptionSHARC+ Dual-Core DSP with Arm Cortex-A5
Pages / Page173 / 6 — ADSP-SC582/SC583/SC584/SC587/SC589/ADSP-21583/21584/21587. Generic …
RevisionB
File Format / SizePDF / 4.5 Mb
Document LanguageEnglish

ADSP-SC582/SC583/SC584/SC587/SC589/ADSP-21583/21584/21587. Generic Interrupt Controller (GIC), PL390

ADSP-SC582/SC583/SC584/SC587/SC589/ADSP-21583/21584/21587 Generic Interrupt Controller (GIC), PL390

Model Line for this Datasheet

Text Version of Document

link to page 5 link to page 6 link to page 7
ADSP-SC582/SC583/SC584/SC587/SC589/ADSP-21583/21584/21587 Generic Interrupt Controller (GIC), PL390 L2 Cache Controller, PL310 (ADSP-SC58x Only) (ADSP-SC58x Only)
The L2 cache controller, PL310 (see Figure 2), works efficiently The generic interrupt controller (GIC) is a centralized resource with the Arm Cortex-A5 processors that implement system fab- for supporting and managing interrupts. The GIC splits into the ric. The cache controller directly interfaces on the data and distributor block (GICPORT0) and the CPU interface block instruction interface. The internal pipelining of the cache con- (GICPORT1). troller is optimized to enable the processors to operate at the same clock frequency. The cache controller supports the
Generic Interrupt Controller Port0 (GICPORT0)
following: The GICPORT0 distributor block performs interrupt prioritiza- • Two read/write 64-bit slave ports, one connected to the tion and distribution to the GICPORT1 blocks that connect to Arm Cortex-A5 instruction and data interfaces, and one the processors in the system. It centralizes all interrupt sources, connecting the Arm Cortex-A5 and SHARC+ cores for determines the priority of each interrupt, and forwards the data coherency. interrupt with the highest priority to the interface, for priority masking and preemption handling. • Two read/write 64-bit master ports for interfacing with the system fabric.
Generic Interrupt Controller Port1 (GICPORT1) SHARC PROCESSOR
The GICPORT1 CPU interface block performs priority masking and preemption handling for a connected processor in the sys- Figure 3 shows the SHARC processor integrates a SHARC+ tem. GICPORT1 supports 8 software generated interrupts SIMD core, L1 memory crossbar, I/D cache controller, L1 mem- (SGIs) and 254 shared peripheral interrupts (SPIs). ory blocks, and the master/slave ports. Figure 4 shows the SHARC+ SIMD core block diagram. The SHARC processor supports a modified Harvard architec- ture in combination with a hierarchical memory structure. L1 memories typically operate at the full processor speed with little or no latency. S
I-CACHE P-CACHE P-CA D-CA P-CACHE P-CA D-CA P-CACHE P-CA B0 RAM SIMD Processor B3 B2 B2 B1 B2 RAM RAM RAM RAM CCLK DOMAIN B3 (64) B2 (64) B1 (64) B0 (64) IO (32) IO (32) SLAVE PORT 1 INTERNAL MEMORY INTERFACE (IMIF) I/D CACHE CONTROL IO (32) IO (32) SLAVE PORT 2 SYSTEM FABRIC CORE SYSCLK MMR DM (64) PM (64) DOMAIN (32) DM (64) CMD (64) MASTER PM (64) PORT DATA SHARC+® SIMD CORE PS (64/48) CMI (64) MASTER PORT INSTRUCTION INTERRUPT SEC
Figure 3. SHARC Processor Block Diagram Rev. B | Page 6 of 173 | December 2018 Document Outline System Features Memory Additional Features Table of Contents Revision History General Description ARM Cortex-A5 Processor Generic Interrupt Controller (GIC), PL390 (ADSP-SC58x Only) Generic Interrupt Controller Port0 (GICPORT0) Generic Interrupt Controller Port1 (GICPORT1) L2 Cache Controller, PL310 (ADSP-SC58x Only) SHARC Processor L1 Memory L1 Master and Slave Ports L1 On-Chip Memory Bandwidth Instruction and Data Cache System Event Controller (SEC) Input Core Memory-Mapped Registers (CMMR) SHARC+ Core Architecture SIMD Computational Engine Independent, Parallel Computation Units Core Timer Data Register File Context Switch Universal Registers (USTAT) Data Address Generators With Zero-Overhead Hardware Circular Buffer Support Flexible Instruction Set Architecture (ISA) Variable Instruction Set Architecture (VISA) Single-Cycle Fetch of Instructional Four Operands Core Event Controller (CEC) Instruction Conflict-Cache Branch Target Buffer/Branch Predictor Addressing Spaces Additional Features System Infrastructure System L2 Memory SHARC+ Core L1 Memory in Multiprocessor Space One Time Programmable Memory (OTP) I/O Memory Space System Memory Map System Crossbars (SCBs) Direct Memory Access (DMA) Memory Direct Memory Access (MDMA) Extended Memory DMA Cyclic Redundant C ode (CRC) Protection Event Handling System Event Controller (SEC) Trigger Routing Unit (TRU) Security Features Arm TrustZone Cryptographic Hardware Accelerators System Protection Unit (SPU) System Memory Protection Unit (SMPU) Security Features Disclaimer Safety Features Multiparity Bit Protected SHARC+ Core L1 Memories Error Correcting Codes (ECC) Protected L2 Memories Cyclic Redundant Code (CRC) Protected Memories Signal Watchdogs System Event Controller (SEC) Processor Peripherals Dynamic Memory Controller (DMC) Digital Audio Interface (DAI) Serial Ports (SPORTs) Asynchronous Sample Rate Converter (ASRC) S/PDIF-Compatible Digital Audio Receiver/Transmitter Precision Clock Generators (PCG) Enhanced Parallel Peripheral Interface (EPPI) Universal Asynchronous Receiver/Transmitter (UART) Ports Serial Peripheral Interface (SPI) Ports Link Ports (LP) ADC Control Module (ACM) Interface 3-Phase Pulse Width Modulator (PWM) Units Ethernet Media Access Controller (EMAC) Audio Video Bridging (AVB) Support (10/100/1000 EMAC Only) Precision Time Protocol (PTP) IEEE 1588 Support Controller Area Network (CAN) Timers General-Purpose (GP) Timers (TIMER) Watchdog Timer (WDT) General-Purpose Counters (CNT) PCI Express (PCIe) Housekeeping Analog-to-Digital Converter (HADC) USB 2.0 On the Go (OTG) Dual-Role Device Controller Media Local Bus (Media LB) 2-Wire Controller Interface (TWI) General-Purpose I/O (GPIO) Pin Interrupts Mobile Storage Interface (MSI) System Acceleration FFT/IFFT Accelerator Finite Impulse Response (FIR) Accelerator Infinite Impulse Response (IIR) Accelerator Harmonic Analysis Engine (HAE) Sinus Cardinalis (SINC) Filter Digital Transmission Content Protection (DTCP) System Design Clock Management Reset Control Unit (RCU) Real-Time Clock (RTC) Clock Generation Unit (CGU) System Crystal Oscillator and USB Crystal Oscillator Clock Distribution Unit (CDU) Power-Up Clock Out/External Clock Booting Thermal Monitoring Unit (TMU) Power Supplies Power Management Target Board JTAG Emulator Connector System Debug System Watchpoint Unit (SWU) Debug Access Port (DAP) Development Tools Integrated Development Environments (IDEs) EZ-KIT Lite Evaluation Board EZ-KIT Lite Evaluation Kits Software Add-Ins for CrossCore Embedded Studio Board Support Packages for Evaluation Hardware Middleware Packages Algorithmic Modules Designing an Emulator-Compatible DSP Board (Target) Additional Information Related Signal Chains ADSP-SC58x/ADSP-2158x Detailed Signal Descriptions 349-Ball CSP_BGA Signal Descriptions GPIO Multiplexing for the 349-Ball CSP_BGA Package 529-Ball CSP_BGA Signal Descriptions GPIO Multiplexing for the 529-Ball CSP_BGA Package ADSP-SC58x/ADSP-2158x Designer Quick Reference Specifications Operating Conditions Clock Related Operating Conditions Electrical Characteristics Total Internal Power Dissipation Application Dependent Current Clock Current Current from High Speed Peripheral Operation Data Transmission Current HADC HADC Electrical Characteristics HADC DC Accuracy HADC Timing Specifications TMU TMU Characteristics Absolute Maximum Ratings ESD Caution Timing Specifications Power-Up Reset Timing Clock and Reset Timing Asynchronous Read SMC Read Cycle Timing With Reference to SYS_CLKOUT Asynchronous Flash Read Asynchronous Page Mode Read Asynchronous Write SMC Write Cycle Timing With Reference to SYS_CLKOUT Asynchronous Flash Write All Accesses DDR2 SDRAM Clock and Control Cycle Timing DDR2 SDRAM Read Cycle Timing DDR2 SDRAM Write Cycle Timing Mobile DDR (LPDDR) SDRAM Clock and Control Cycle Timing Mobile DDR SDRAM Read Cycle Timing Mobile DDR SDRAM Write Cycle Timing DDR3 SDRAM Clock and Control Cycle Timing DDR3 SDRAM Read Cycle Timing DDR3 SDRAM Write Cycle Timing Enhanced Parallel Peripheral Interface (EPPI) Timing Link Ports (LP) Serial Ports (SPORT) Sample Rate Converter—Serial Input Port Sample Rate Converter—Serial Output Port SPI Port—Master Timing SPI Port—Slave Timing SPI Port—SPI Ready (SPIx_RDY) Slave Timing SPI Port—Open Drain Mode (ODM) Timing SPI Port—SPIx_RDY Master Timing Precision Clock Generator (PCG) (Direct Pin Routing) General-Purpose I/O Port Timing General-Purpose I/O Timer Cycle Timing DAIx Pin to DAIx Pin Direct Routing (DAI0 Block and DAI1 Block) Up/Down Counter/Rotary Encoder Timing Pulse Width Modulator (PWM) Timing PWM — Medium Precision (MP) Mode Timing PWM — Heightened Precision (HP) Mode Timing ADC Controller Module (ACM) Timing Universal Asynchronous Receiver-Transmitter (UART) Ports—Receive and Transmit Timing Controller Area Network (CAN) Interface Universal Serial Bus (USB) PCI Express (PCIe) 10/100 EMAC Timing (ETH0 and ETH1) 10/100/1000 EMAC Timing (ETH0 Only) Sinus Cardinalis (SINC) Filter Timing Sony/Philips Digital Interface (S/PDIF) Transmitter S/PDIF Transmitter Serial Input Waveforms S/PDIF Transmitter Input Data Timing Oversampling Clock (TxCLK) Switching Characteristics S/PDIF Receiver Internal Digital PLL Mode Media LB (MLB) Mobile Storage Interface (MSI) Controller Timing Program Trace Macrocell (PTM) Timing Debug Interface (JTAG Emulation Port) Timing Output Drive Currents Test Conditions Output Enable Time Measurement Output Disable Time Measurement Capacitive Loading Environmental Conditions ADSP-SC58x/ADSP-2158x 349-Ball BGA Ball Assignments ADSP-SC58x/ADSP-2158x 349-Ball BGA Ball Assignments (Numerical by Ball Number) ADSP-SC58x/ADSP-2158x 349-Ball BGA Ball Assignments (Alphabetical by Pin Name) Configuration of the 349-Ball CSP_BGA ADSP-SC58x/ADSP-2158x 529-Ball BGA Ball Assignments ADSP-SC58x/ADSP-2158x 529-Ball BGA Ball Assignments (Numerical by Ball Number) ADSP-SC58x/ADSP-2158x 529-Ball BGA Ball Assignments (Alphabetical by Pin Name) Configuration of the 529-Ball CSP_BGA Outline Dimensions Surface-Mount Design Automotive Products Ordering Guide
EMS supplier