Datasheet MCP48CXBXX (Microchip)

ManufacturerMicrochip
Description8/10/12-Bit Digital-to-Analog Converters, 1 LSb INL Single/Dual Voltage Outputs with SPI Interface
Pages / Page106 / 1 — MCP48CXBXX. 8/10/12-Bit Digital-to-Analog Converters, 1 LSb INL. …
File Format / SizePDF / 8.9 Mb
Document LanguageEnglish

MCP48CXBXX. 8/10/12-Bit Digital-to-Analog Converters, 1 LSb INL. Single/Dual Voltage Outputs with SPI Interface. Features

Datasheet MCP48CXBXX Microchip

Model Line for this Datasheet

Text Version of Document

MCP48CXBXX 8/10/12-Bit Digital-to-Analog Converters, 1 LSb INL Single/Dual Voltage Outputs with SPI Interface Features Package Types
• Memory Options:
MCP48CXBX1
(Single) - Volatile Memory: MCP48CVBXX
MSOP-10, DFN-10 (3 x 3)
- Nonvolatile Memory: MCP48CMBXX • Operating Voltage Range: VDD 1 10 SDI - 2.7V to 5.5V – Full specifications CS 2 9 SCK - 1.8V to 2.7V – Reduced device specifications VREF 3 8 SDO • Output Voltage Resolutions: VOUT 4 7 VSS - 8-Bit: MCP48CXB0X (256 steps) NC 5 6 LAT/HVC - 10-Bit: MCP48CXB1X (1024 steps) - 12-Bit: MCP48CXB2X (4096 steps)
QFN-16 (3 x 3)
• Nonvolatile Memory (MTP) Size: 32 Locations I DD • 1 LSb Integral Nonlinearity (INL) Specification V NC NC SD • DAC Voltage Reference Source Options: 16 15 14 13 - Device V CS 1 12 SCK DD - Externa l V VREF 2 11 SDO REF pin (buffered or unbuffered) 17 EP(1) - Internal band gap (1.214V typical) VOUT 3 10 VSS • Output Gain Options: NC 4 9 LAT/HVC - 1x (Unity) 5 6 7 8 - 2x (available when not using internal VDD as NC NC NC NC voltage source)
MCP48CXBX2
(Dual) • Power-on/Brown-out Reset (POR/BOR) Protection
MSOP-10, DFN-10 (3 x 3)
• Power-Down Modes: VDD 1 10 SDI - Disconnects output buffer (High-Impedance) CS 2 9 SCK - Selection of VOUT pull-down resistors V 3 8 SDO (100 k or 1 k) REF • SPI Interface: VOUT0 4 7 VSS - Supports ‘00’ and ‘11’ modes V 5 6 LAT/HVC(2) OUT1 - 50 MHz write speed - 25 MHz read speed
QFN-16 (3 x 3)
I • Package Types: DDV NC NC SD - Dual: 16-lead 3 x 3 QFN, 10-lead MSOP, 16 15 14 13 10-lead 3 x 3 DFN CS 1 12 SCK - Single: 16-lead 3 x 3 QFN, 10-lead MSOP, V 10-lead 3 x 3 DFN REF0 2 11 SDO V 17 EP(1) • Extended Temperature Range: -40°C to +125°C OUT0 3 10 VSS VREF1 4 9 LAT0/HVC 5 6 7 8 1 T1 NC NC T OUV LA
Note 1:
Exposed pad (substrate paddle).
2:
This pin’s signal can be connected to DAC0 and/or DAC1.  2019 Microchip Technology Inc. DS20006160A-page 1 Document Outline 8/10/12-Bit Digital-to-Analog Converters, 1 LSb INL Single/Dual Voltage Outputs with SPI Interface Features Package Types General Description Applications MCP48CVBX1 Block Diagram (Single-Channel Output) MCP48CVBX2 Block Diagram (Dual-Channel Output) Family Device Features 1.0 Electrical Characteristics Absolute Maximum Ratings DC Characteristics DC Notes 1.1 Timing Waveforms and Requirements FIGURE 1-1: VOUT Settling Time Waveforms. TABLE 1-1: Wiper Settling Timing FIGURE 1-2: LAT Pin Waveforms. TABLE 1-2: LAT Pin Timing FIGURE 1-3: Power-on and Brown-out Reset Waveforms. FIGURE 1-4: SPI Power-Down Waveforms. TABLE 1-3: RESET and Power-Down Timing 1.2 SPI Mode Timing Waveforms and Requirements FIGURE 1-5: SPI Timing Waveform (Mode = ‘11’). TABLE 1-4: SPI Requirements (Mode = ‘11’) FIGURE 1-6: SPI Timing Waveform (Mode = 00). TABLE 1-5: SPI Requirements (Mode = 00) Temperature Specifications 2.0 Typical Performance Curves 2.1 Electrical Data FIGURE 2-1: Average Device Supply Current vs. FSCK Frequency, Voltage and Temperature - Active Interface, VRxB:VRxA = ‘00’, (VDD Mode). FIGURE 2-2: Average Device Supply Current vs. FSCK Frequency, Voltage and Temperature - Active Interface, VRxB:VRxA = ‘01’ (Band Gap Mode). FIGURE 2-3: Average Device Supply Current vs. FSCK Frequency, Voltage and Temperature - Active Interface, VRxB:VRxA = ‘11’ (VREF Buffered Mode). FIGURE 2-4: Average Device Supply Current - Inactive Interface (SCK = VIH or VIL) vs. Voltage and Temperature, VRxB:VRxA = ‘00’ (VDD Mode). FIGURE 2-5: Average Device Supply Current - Inactive Interface (SCK = VIH or VIL) vs. Voltage and Temperature, VRxB:VRxA = ‘01’ (Band Gap Mode). FIGURE 2-6: Average Device Supply Current - Inactive Interface (SCK = VIH or VIL) vs. Voltage and Temperature, VRxB:VRxA = ‘11’ (VREF Buffered Mode). FIGURE 2-7: Average Device Supply Current vs. FSCK Frequency, Voltage and Temperature - Active Interface, VRxB:VRxA = ‘10’ (VREF Unbuffered Mode). FIGURE 2-8: Average Device Supply Active Current (IDDA) (at 5.5V and FSCK = 50 MHz) vs. Temperature and DAC Reference Voltage Mode. FIGURE 2-9: Average Device Supply Current - Inactive Interface (SCK = VIH or VIL) vs. Voltage and Temperature, VRxB:VRxA = ‘10’ (VREF Unbuffered Mode). 2.2 Linearity Data FIGURE 2-10: Total Unadjusted Error (VOUT) vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 5.5V. FIGURE 2-11: Total Unadjusted Error (VOUT) vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 2.7V. FIGURE 2-12: Total Unadjusted Error (VOUT) vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 1.8V. FIGURE 2-13: Total Unadjusted Error (VOUT) vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 5.5V. FIGURE 2-14: Total Unadjusted Error (VOUT) vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 2.7V. FIGURE 2-15: Total Unadjusted Error (VOUT) vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 1.8V. FIGURE 2-16: INL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 5.5V. FIGURE 2-17: INL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 2.7V. FIGURE 2-18: INL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 1.8V. FIGURE 2-19: INL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 5.5V. FIGURE 2-20: INL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 2.7V. FIGURE 2-21: INL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 1.8V. FIGURE 2-22: DNL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 5.5V. FIGURE 2-23: DNL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 2.7V. FIGURE 2-24: DNL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 1.8V. FIGURE 2-25: DNL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 5.5V. FIGURE 2-26: DNL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 2.7V. FIGURE 2-27: DNL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 1.8V. FIGURE 2-28: Total Unadjusted Error (VOUT) vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VREF = 0.5 x VDD = 2.75V, Gain = 2X. FIGURE 2-29: Total Unadjusted Error (VOUT) vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VREF = 0.5 x VDD = 1.35V, Gain = 2X. FIGURE 2-30: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual-Channel - MCP48CXB22), VREF = 0.5 x VDD = 2.75V, Gain = 2X. FIGURE 2-31: Total Unadjusted Error (VOUT) vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VREF = 0.5 x VDD = 1.35V, Gain = 2X. FIGURE 2-32: INL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VREF = 0.5 x VDD = 2.75V, Gain = 2X. FIGURE 2-33: INL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VREF = 0.5 x VDD = 1.35V, Gain = 2X. FIGURE 2-34: INL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VREF = 0.5 x VDD = 2.75V, Gain = 2X. FIGURE 2-35: INL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VREF = 0.5 x VDD = 1.35V, Gain = 2X. FIGURE 2-36: DNL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 5.5V, VREF = 0.5 x VDD = 2.75V. FIGURE 2-37: DNL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 5.5V, VREF = 0.5 x VDD = 1.35V. FIGURE 2-38: DNL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 5.5V, VREF = 0.5 x VDD = 2.75V. FIGURE 2-39: DNL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 5.5V, VREF = 0.5 x VDD = 1.35V. FIGURE 2-40: Total Unadjusted Error (VOUT) vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 5.5V, Gain = 1X. FIGURE 2-41: Total Unadjusted Error (VOUT) vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 5.5V, Gain = 2X. FIGURE 2-42: Total Unadjusted Error (VOUT) vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 2.7V, Gain = 1X. FIGURE 2-43: Total Unadjusted Error (VOUT) vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 5.5V, Gain = 1X. FIGURE 2-44: Total Unadjusted Error (VOUT) vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 5.5V, Gain = 2X. FIGURE 2-45: Total Unadjusted Error (VOUT) vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 2.7V, Gain = 1X. FIGURE 2-46: Total Unadjusted Error (VOUT) vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 2.7V, Gain = 2X. FIGURE 2-47: Total Unadjusted Error (VOUT) vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 1.8V, Gain = 1X. FIGURE 2-48: Total Unadjusted Error (VOUT) vs. DAC Code, +25°C, Gain = 1X. FIGURE 2-49: Total Unadjusted Error (VOUT) vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 2.7V, Gain = 2X. FIGURE 2-50: Total Unadjusted Error (VOUT) vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 1.8V, Gain = 1X. FIGURE 2-51: Total Unadjusted Error (VOUT) vs. DAC Code, +25°C, Gain = 2X. FIGURE 2-52: Total Unadjusted Error (VOUT) vs. DAC Code, +25°C, Gain = 1X and 2X. FIGURE 2-53: INL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 5.5V, Gain = 1X. FIGURE 2-54: INL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 5.5V, Gain = 2X. FIGURE 2-55: INL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 2.7V, Gain = 1X. FIGURE 2-56: INL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 5.5V, Gain = 1X. FIGURE 2-57: INL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 5.5V, Gain = 2X. FIGURE 2-58: INL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 2.7V, Gain = 1X. FIGURE 2-59: INL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 2.7V, Gain = 2X. FIGURE 2-60: INL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 1.8V, Gain = 1X. FIGURE 2-61: INL Error vs. DAC Code, +25°C, Gain = 1X. FIGURE 2-62: INL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 2.7V, Gain = 2X. FIGURE 2-63: INL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 1.8V, Gain = 1X. FIGURE 2-64: INL Error vs. DAC Code, +25°C, Gain = 2X. FIGURE 2-65: INL Error vs. DAC Code, +25°C, Gain = 1X and 2X. FIGURE 2-66: DNL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 5.5V, Gain = 1X. FIGURE 2-67: DNL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 5.5V, Gain = 2X. FIGURE 2-68: DNL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 2.7V, Gain = 1X. FIGURE 2-69: DNL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 5.5V, Gain = 1X. FIGURE 2-70: DNL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 5.5V, Gain = 2X. FIGURE 2-71: DNL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 2.7V, Gain = 1X. FIGURE 2-72: DNL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 2.7V, Gain = 2X. FIGURE 2-73: DNL Error vs. DAC Code and Temperature (Single-Channel - MCP48CXB21), VDD = 1.8V, Gain = 1X. FIGURE 2-74: DNL Error vs. DAC Code, +25°C, Gain = 1X. FIGURE 2-75: DNL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 2.7V, Gain = 2X. FIGURE 2-76: DNL Error vs. DAC Code and Temperature (Dual-Channel - MCP48CXB22), VDD = 1.8V, Gain = 1X. FIGURE 2-77: DNL Error vs. DAC Code, +25°C, Gain = 2X. FIGURE 2-78: DNL Error vs. DAC Code, +25°C, Gain = 1X and 2X. 3.0 Pin Descriptions TABLE 3-1: MCP48CXBX1 (Single-DAC) Pin Function Table TABLE 3-2: MCP48CXBX2 (Dual-DAC) Pin Function Table 3.1 Positive Power Supply Input (VDD) 3.2 Ground (VSS) 3.3 Voltage Reference Pin (VREF) 3.4 No Connect (NC) 3.5 Analog Output Voltage Pins (VOUT0, VOUT1) 3.6 Latch/High-Voltage Command Pin (LAT/HVC) 3.7 SPI - Chip Select Pin (CS) 3.8 SPI - Serial Clock Pin (SCK) 3.9 SPI - Serial Data In Pin (SDI) 3.10 SPI - Serial Data Out Pin (SDO) 4.0 General Description 4.1 Power-on Reset/Brown-out Reset (POR/BOR) FIGURE 4-1: Power-on Reset Operation. 4.2 Device Memory TABLE 4-1: MCP48CXBXX MEMORY MAP (16-bit) TABLE 4-2: Factory Default POR/BOR Values (MTP Memory Unprogrammed) Register 4-1: DAC0 (00h/10h) and DAC1 (01h/11h) OUTPUT VALUE Registers (Volatile/NONvOLATILE) Register 4-2: Voltage Reference (VREF) Control Registers (08h/18h) (Volatile/NONVOLATILE) Register 4-3: Power-down Control Registers (09h/19h) (VOLATILE/NONVOLATILE) Register 4-4: Gain Control and System Status Register (0Ah) (VOLATILE) Register 4-5: Gain Control Register (1AH) (Nonvolatile) Register 4-6: WiperLock Technology Control Register (1Bh) (NonVolatile) 5.0 DAC Circuitry FIGURE 5-1: MCP48CXBXX DAC Module Block Diagram. 5.1 Resistor Ladder FIGURE 5-2: Resistor Ladder Model Block Diagram. 5.2 Voltage Reference Selection FIGURE 5-3: Resistor Ladder Reference Voltage Selection Block Diagram. FIGURE 5-4: Reference Voltage Selection Implementation Block Diagram. TABLE 5-1: VOUT Using Band Gap 5.3 Output Buffer/VOUT Operation FIGURE 5-5: Output Driver Block Diagram. TABLE 5-2: Output Driver Gain FIGURE 5-6: VOUT Pin Slew Rate. FIGURE 5-7: Circuit to Stabilize Output Buffer for Large Capacitive Loads (CL). TABLE 5-3: Theoretical Step Voltage (VS)(1) 5.4 Latch Pin (LAT) FIGURE 5-8: LAT and DAC Interaction. FIGURE 5-9: Example Use of LAT Pin Operation. 5.5 Power-Down Operation TABLE 5-4: Power-Down Bits and Output Resistive Load TABLE 5-5: DAC Current Sources TABLE 5-6: DAC Input Code Vs. Calculated Analog Output (VOUT) (VDD = 5.0V) 6.0 SPI Serial Interface Module FIGURE 6-1: Typical SPI Interface. 6.1 Overview 6.2 Communication Data Rates 6.3 POR/BOR 6.4 Interface Pins (CS, SCK, SDI, SDO, and LAT/HVC) TABLE 6-1: SCK Frequency 6.5 Device Memory Address 6.6 SPI Modes FIGURE 6-2: 24-Bit Commands (Write, Read) - SPI Waveform (Mode 0,0). FIGURE 6-3: 24-Bit Commands (Write, Read) - SPI Waveform (Mode 1,1). 7.0 Device Commands TABLE 7-1: COMMAND BITS OVERVIEW FIGURE 7-1: 24-bit SPI Command Format. TABLE 7-2: SPI Commands - Number of Clocks 7.1 Command Byte 7.2 Data Bytes 7.3 Error Condition 7.4 Continuous Commands 7.5 Write Command FIGURE 7-2: Write Single Memory Location Command - SDI and SDO States. FIGURE 7-3: Continuous Write Sequence (Volatile Memory Only). 7.6 Read Command FIGURE 7-4: Read Single Memory Location Command - SDI and SDO States. FIGURE 7-5: Continuous Read Sequence. 8.0 Typical Applications 8.1 Design Considerations FIGURE 8-1: Example Circuit. TABLE 8-1: Package Footprint(1) 8.2 Application Examples FIGURE 8-2: Example Circuit Of Set Point or Threshold Calibration. FIGURE 8-3: Single-Supply “Window” DAC. 8.3 Bipolar Operation FIGURE 8-4: Digitally-Controlled Bipolar Voltage Source Example Circuit. 8.4 Selectable Gain and Offset Bipolar Voltage Output FIGURE 8-5: Bipolar Voltage Source with Selectable Gain and Offset. 8.5 Designing a Double-Precision DAC FIGURE 8-6: Simple Double Precision DAC Using MCP48CVBX2. 8.6 Building Programmable Current Source FIGURE 8-7: Digitally-Controlled Current Source. 8.7 Serial Interface Communication Times 9.0 Development Support 9.1 Development Tools 9.2 Technical Documentation TABLE 9-1: Development Tools (Note 1) TABLE 9-2: Technical Documentation FIGURE 9-1: MCP48CXBXX Evaluation Board Circuit Using ADM00309. 10.0 Packaging Information 10.1 Package Marking Information Appendix A: Revision History Revision A (February 2019) Appendix B: Terminology B.1 Resolution B.2 Least Significant Bit (LSb) B.3 Monotonic Operation B.4 Full-Scale Error (EFS) B.5 Zero-Scale Error (EZS) B.6 Total Unadjusted Error (ET) B.7 Offset Error (EOS) B.8 Offset Error Drift (EOSD) B.9 Gain Error (EG) B.10 Gain Error Drift (EGD) B.11 Integral Nonlinearity (INL) B.12 Differential Nonlinearity (DNL) B.13 Settling Time B.14 Major-Code Transition Glitch B.15 Digital Feed-Through B.16 -3 dB Bandwidth B.17 Power-Supply Sensitivity (PSS) B.18 Power-Supply Rejection Ratio (PSRR) B.19 VOUT Temperature Coefficient B.20 Absolute Temperature Coefficient B.21 Noise Spectral Density Product Identification System Trademarks Worldwide Sales and Service
EMS supplier