Datasheet Texas Instruments TLV1549CPE4

ManufacturerTexas Instruments
SeriesTLV1549
Part NumberTLV1549CPE4
Datasheet Texas Instruments TLV1549CPE4

10-Bit 38 kSPS ADC Ser. Out, Inherent S&H Function, Terminal Compat. W/TLC1549, TLC1549x 8-PDIP

Datasheets

10-Bit Analog-to-Digital Converters With Serial Control datasheet
PDF, 810 Kb, Revision: C, File published: Mar 1, 1995
Extract from the document

Prices

Status

Lifecycle StatusActive (Recommended for new designs)
Manufacture's Sample AvailabilityYes

Packaging

Pin8
Package TypeP
Industry STD TermPDIP
JEDEC CodeR-PDIP-T
Package QTY50
CarrierTUBE
Device MarkingTLV1549CP
Width (mm)6.35
Length (mm)9.81
Thickness (mm)3.9
Pitch (mm)2.54
Max Height (mm)5.08
Mechanical DataDownload

Parametrics

# Input Channels1
Analog Voltage AVDD(Max)3.6 V
Analog Voltage AVDD(Min)3 V
ArchitectureSAR
Digital Supply(Max)3.6 V
Digital Supply(Min)3 V
INL(Max)1 +/-LSB
Input Range(Max)3.6 V
Input TypeSingle-Ended
Integrated FeaturesN/A
InterfaceSPI
Multi-Channel ConfigurationN/A
Operating Temperature Range-40 to 85 C
Package GroupPDIP
Package Size: mm2:W x LSee datasheet (PDIP) PKG
Power Consumption(Typ)1.32 mW
RatingCatalog
Reference ModeExt
Resolution10 Bits
Sample Rate (max)38kSPS SPS
Sample Rate(Max)0.038 MSPS

Eco Plan

RoHSCompliant
Pb FreeYes

Application Notes

  • Interfacing the TLV1549 10-Bit Serial-Out ADC to Popular 3.3-V Microcontrollers
    PDF, 90 Kb, File published: Jan 1, 1994
    The TLV1549, 10-bit serial-out A/ D converter operates with a 3.3-V (+/- 0.3 V) single supply. The device uses a switched-capacitor successive approximation method to perform the A/D conversion in a maximum of 21 ?s. This document describes interfacing the TLV1549 to three microcontrollors, 68HC05, TMS70C02, and 80C51-L, which operate from a single 3.3-V supply rail. Each interface requires no glu
  • Determining Minimum Acquisition Times for SAR ADCs, part 1 (Rev. A)
    PDF, 227 Kb, Revision: A, File published: Nov 10, 2010
    This application report analyzes a simple method for calculating minimum acquisition times for successive-approximation register analog-to-digital converters (SAR ADCs). The input structure of the ADC is examined along with the driving circuit. The voltage on the sampling capacitor is then determined for the case when a step function is applied to the input of the driving circuit. Three different
  • Determining Minimum Acquisition Times for SAR ADCs, part 2
    PDF, 215 Kb, File published: Mar 17, 2011
    The input structure circuit of a successive-approximation register analog-to-digital converter (SAR ADC) incombination with the driving circuit forms a transfer function that can be used to determine minimum acquisition times for different types of applied input signals. This application report, which builds on Determining Minimum Acquisition Times for SAR ADCs When a Step Function is Applied to

Model Line

Manufacturer's Classification

  • Semiconductors > Data Converters > Analog-to-Digital Converters (ADCs) > Precision ADCs (<=10MSPS)
EMS supplier